当代电子技术的发展不仅需要高效性能,还需要可靠和可持续的解决方案。而SiC MOSFET作为一种新型的功率器件,正在引领着未来能源转型的浪潮。SiC MOSFET的一个重要组成部分就是其栅氧界面。这个界面是指栅极金属和硅氧化物之间的接触区域。而栅氧界面的缺陷一直是广为关注的问题,本文将带大家了解栅氧界面的缺陷。
一、SiC/ SiO2界面电荷分布
了解SiC/ SiO2界面电荷的存在形式、分布情况以及影响是了解SiC/ SiO2界面的前提,界面电荷一般指:可动离子电荷(Qm)、氧化物陷阱电荷(QOX)、固定氧化物电荷(Qf)、近界面陷阱电荷(Qnit)、界面陷阱电荷(Qit),具体分布如下图。
可动离子电荷:
在氧化物层中,大量的碱金属离子(如钠、钾)和碱土金属离子(如镁、钙)等都可以作为氧离子的位置缺陷,从而引起可动离子电荷的形成。此外,氢原子也可以在氧化物层中引起类似的效应。
另外,低温下不可动的负离子和重金属离子也可能对可动离子电荷产生影响。这些离子在氧化物层中的位置缺陷和电荷重新分布,都会导致氧化物层内部的电荷积累和运动,进而形成可动离子电荷。
PS:
1)作为工艺关键步骤来说:栅氧作为SiC MOSFET制成重中之重的一步,栅氧设备的管控非常严格,杂质离子微乎其微。
2)作为器件关键结构来说:栅氧作为SiC MOSFET电性能、可靠性等关键影响因素,杂质离子的出现会致使栅氧质量过差。
因此,体现在大家面前的成品MOS,这一部分的缺陷可以忽略不记。
氧化物陷阱电荷
氧化物陷阱电荷可以是正电荷或负电荷,其形成原因是氧化物内部俘获了空穴或电子。这些陷阱的形成机制包括离子辐射、Fowler-Nordheim隧穿和雪崩注入等。
如上图,以陷阱俘获电子后带负电为例,此时陷阱带负电,在氧化层中,以负电中心排斥表面的沟道电子,使沟道迁移率低,比导通电阻增加,影响器件性能。
固定氧化物电荷
SiC/SiO2界面中的固定氧化物电荷主要位于界面两个纳米范围内,是由结构缺陷产生的正电荷所致,这种带正电的缺陷会影响器件的Vth。固定氧化物电荷的大小一般认为取决于氧化工艺条件,包括氧化温度、氧化时间、气氛等因素。
近界面陷阱电荷
主要由界面附近氧化物中的氧空位相关缺陷形成,这类缺陷主要存在于由SiOxCy构成的过渡层中。在SiO2薄膜的氧化过程中,由于杂质、非均匀性或其他因素,有时会形成氧空位(O vacancy)相关的缺陷。这些氧空位相关的缺陷可以捕获电子或空穴,并在界面附近形成陷阱电荷。
界面陷阱电荷
SiC/SiO2界面陷阱电荷主要由金属杂质、结构缺陷和氧化诱导缺陷等因素引起。这些陷阱电荷可以是正电荷或负电荷,并位于SiC/SiO2界面处。与Si/SiO2界面类似,辐射和键断裂等过程也可能导致SiC/SiO2界面陷阱电荷的形成。不同之处在于SiC/SiO2界面陷阱电荷可以通过充放电来改变表面势,并与SiC衬底发生交互作用。而在Si材料中,氢和氮可以有效消除Si/SiO2界面陷阱电荷,但在SiC中,氢钝化的效果相对较弱,无法显著消除SiC/SiO2界面陷阱电荷。
SiC和Si在界面处的巨大不同是由于它们的晶格结构和化学性质的差异所致。SiC具有较大的带隙和较高的热稳定性,这使得SiC/SiO2界面陷阱电荷的性质和行为与Si/SiO2界面陷阱电荷不同。
二、SiC/ SiO2界面处C的存在形式
在SiC氧化工艺中,通常使用的氧化气体包括NO、O2或O3等,这些气体会在高温环境中与SiC晶片发生氧化反应。在不同的氧化条件下(如干氧化和湿氧化),基本的反应式如下所示:
1.干氧化条件下的基本反应式:
SiC + 2O2 → SiO2 + CO2
在干氧气氛中,SiC与氧气发生反应生成SiO2和CO2。这是一种常见的干氧化反应,产生的SiO2会形成SiC/SiO2界面。
2.湿氧化条件下的基本反应式:
SiC + 2H2O → SiO2 + 2H2 + CO
在湿氧气氛中,SiC与水蒸气发生反应生成SiO2、H2和CO。湿氧化条件下的反应通常会产生一些氢气和一氧化碳,同时形成SiO2层。
这些基本的氧化反应式描述了SiC在不同氧化条件下与氧化气体的反应过程。在SiC/SiO2界面处,碳的主要存在形式分以下几种。
1.C-Si 键:
在SiC晶体中,碳原子与硅原子形成了C-Si键。在形成SiO2层的过程中,SiC表面的C-Si键会被氧化成C=O键,同时释放出Si原子。因此,SiC/SiO2界面处会存在一定量的C=O键。
2.碳空位:
碳原子在SiC中也可能形成空位缺陷,即碳空位。这些碳空位会在SiO2层生长过程中反应,并在SiC/SiO2界面处形成界面缺陷。
3.硅酸盐:
在SiO2层中,由于碳原子的存在,部分硅原子会和碳原子结合形成硅酸盐(Si-C-O)。这些硅酸盐会在SiC/SiO2界面处形成陷阱电荷,并影响器件性能。
4.碳化物:
在某些情况下,碳还可以以形式化合物(如碳化物)的形式存在于SiC/SiO2界面处。这些化合物可能对器件性能产生负面影响。
虽然SiC MOSFET栅氧界面缺陷仍然存在,但在技术进步和创新的推动下,这些问题将逐渐得到解决。随着SiC MOSFET在各个应用领域的深入发展和应用,我
们相信其栅氧界面缺陷问题将不断得到优化和改善,为未来的能源转型和可持续发展提供更好的解决方案。
上一篇:新型互连技术—烧结银技术 | 下一篇:浅谈 SiC MOSFET Crosstalk |